CLASSIFICAÇÃO SUPERVISIONADA POR MÁXIMA VEROSSIMILHANÇA GAUSSIANA COMO FERRAMENTA PARA MONITORAMENTO DE ÁREAS DE VEGETAÇÃO EM REGIÕES METROPOLITANAS
DOI:
https://doi.org/10.18316/cippus.v7i2.6362Palavras-chave:
Sensoriamento Remoto, Classificação Supervisionada, Urbanização, Mudança no uso e Cobertura da Terra, Landsat 5.Resumo
O sensoriamento remoto tem se mostrado uma grande ferramenta para o mapeamento do crescimento urbano nas regiões com crescente urbanização. A metodologia mais utilizada é a classificação digital de dados multiespectrais, realizada de forma supervisionada ou não supervisionada. Este estudo tem por objetivo destacar as áreas de vegetação que sofreram redução em decorrência da implantação de empreendimentos, consequentemente a expansão urbana, a partir da classificação supervisionada por Máxima Verossimilhança Gaussiana (MAXVER), utilizando de imagens digitais do satélite Landsat 5, tendo como área de estudo a região Metropolitana de Porto Alegre, Rio Grande do Sul. As imagens orbitais Landsat 5 com data de passagem nos anos 2005 e 2011, foram coletadas no banco de imagens do Instituto Nacional de Pesquisas Espaciais (INPE) e foram classificadas no software MultiSpec utilizando as classes urbano, vegetação, água, solo e areia. Constatou-se, com uma acurácia global superior a 90% para todas as classes, uma redução de 19,8 % da área de vegetação e um aumento de 16,1 % na área de urbanização, evidenciando o impacto da urbanização na redução das áreas de vegetação.Downloads
Publicado
2019-12-23
Edição
Seção
Artigos
Licença
Autores que submetem seus manuscritos para serem publicados nesta revista concordam com os seguintes termos:
-
Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Em virtude dos artigos aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.
A Revista Cippus está licenciado sob uma licença Creative Commons Atribuição-Uso não-comercial 3.0 Unported.