Relationship of gut microbiota, cell integrity, and n-3 polyunsaturated fatty acids in inflammation

Autores

DOI:

https://doi.org/10.18316/sdh.v11i2.9528

Palavras-chave:

Gut Microbiota, Immune system, n-3 Polyunsaturated Fatty Acids, Inflammation.

Resumo

The gut microbiota is defined as microorganisms that inhabit the gastrointestinal tract. This population is involved in critical functions for host homeostasis, including nutrient digestion and synthesis, cell integrity, immune system development, a barrier against pathogens, and consequently local inflammatory processes. The aim of this work was to investigate the relationship between cellular integrity, gut microbiota, and n-3 polyunsaturated fatty acids in inflammation. The study consists of a narrative literature review based on scientific articles published in journals indexed in electronic databases. The composition of the microbiota is relatively stable throughout life but can be altered by various factors such as maternal microbiota, age, genetic factors, antibiotic use, lifestyle, and especially diet. It is well known that dietary habits play a crucial role in altering the composition of the microbiota. Certain types of fats, such as polyunsaturated fatty acids and n-3 fatty acids, are known to improve symptoms of various diseases, including cardiometabolic and inflammatory diseases. In particular, the changes in the gut microbiota associated with n-3 fatty acids are poorly understood. However, experimental studies suggest that n-3 promotes improvement in gut microbiota and intestinal integrity, in addition to controlling local inflammation.

Biografia do Autor

Thalita de Albuquerque Veras Câmara, Universidade Federal do Maranhão

Programa de Pós Graduação em Ciências da Saúde

Iandeyara Savanna Carneiro Silva, Universidade Federal do Maranhão

Programa de Pós-Graduação em Ciências da Saúde

Maria Clara Caldas Costa, Universidade Ceuma

Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana

Afonso Gomes Abreu, Universidade Ceuma

Laboratório de Patogenicidade Microbiana, Programa de Pós-Graduação em Biologia Microbiana

Referências

Sebastián-Domingo JJ, Sánchez-Sánchez C. From the intestinal flora to the microbiome. Vol. 110, Revista Espanola de Enfermedades Digestivas. ARAN Ediciones S.A.; 2018. p. 51–6.

Arumugam M, Raes J, Pelletier E, le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011 May 12;473(7346):174–80.

Lee JM, Lee H, Kang SB, Park WJ. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances [Internet]. Vol. 8, Nutrients. MDPI AG; 2016 [cited 2020 Dec 4]. Available from: https://pubmed.ncbi.nlm.nih.gov/26742061/

Pusceddu MM, el Aidy S, Crispie F, O’Sullivan O, Cotter P, Stanton C, et al. N-3 polyunsaturated fatty acids (PUFAs) reverse the impact of early-life stress on the gut microbiota. PLoS ONE. 2015 Oct 1;10(10).

Tojo R, Suárez A, Clemente MG, de Los Reyes-Gavilán CG, Margolles A, Gueimonde M, et al. Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. Vol. 20, World Journal of Gastroenterology. WJG Press; 2014. p. 15163–76.

Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, et al. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nature Communications. 2019 Dec 1;10(1).

de Angelis M, Garruti G, Minervini F, Bonfrate L, Portincasa P, Gobbetti M. The food-gut human axis: the effects of diet on gut microbiota and metabolome. Current Medicinal Chemistry. 2017 May 2;26(19):3567–83.

Kayama H, Takeda K. Functions of innate immune cells and commensal bacteria in gut homeostasis. Vol. 159, Journal of Biochemistry. Oxford University Press; 2015. p. 141–9.

Tomasello G, Mazzola M, Leone A, Sinagra E, Zummo G, Farina F, et al. Nutrition, oxidative stress and intestinal dysbiosis: Influence of diet on gut microbiota in inflammatory bowel diseases. Biomedical Papers. 2016;160(4):461–6.

Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. Journal of Autoimmunity. 2018 Aug 1;92:12–34.

Stecher B. The roles of inflammation, nutrient availability and the commensal microbiota in enteric pathogen infection. Microbiology Spectrum. 2015 Jun 18;3(3).

Nébot-Vivinus M, Harkat C, Bzioueche H, Cartier C, Plichon-Dainese R, Moussa L, et al. Multispecies probiotic protects gut barrier function in experimental models. World Journal of Gastroenterology. 2014;20(22):6832–43.

Buffie CG, Pamer EG. Microbiota-mediated colonization resistance against intestinal pathogens. Nature Reviews Immunology 2013 13:11 [Internet]. 2013 Oct 7 [cited 2021 Aug 3];13(11):790–801. Available from: https://www.nature.com/articles/nri3535

Thevaranjan N, Puchta A, Schulz C, Naidoo A, Szamosi JC, Verschoor CP, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host and Microbe [Internet]. 2017 Apr 12 [cited 2020 Dec 3];21(4):455-466.e4. Available from: https://pubmed.ncbi.nlm.nih.gov/28407483/

Bischoff SC, Barbara G, Buurman W, Ockhuizen T, Schulzke J-D, Serino M, et al. Intestinal permeability – a new target for disease prevention and therapy. BMC Gastroenterology [Internet]. 2014 Nov 18 [cited 2021 Aug 2];14(1). Available from: /pmc/articles/PMC4253991/

De Oliveira GLV, Leite AZ, Higuchi BS, Gonzaga MI, Mariano VS. Intestinal dysbiosis and probiotic applications in autoimmune diseases. Vol. 152, Immunology. Blackwell Publishing Ltd; 2017. p. 1–12.

Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Current gastroenterology reports [Internet]. 2010 Oct [cited 2022 Jan 23];12(5):319–30. Available from: https://pubmed.ncbi.nlm.nih.gov/20703838/

Pelaseyed T, Bergström JH, Gustafsson JK, Ermund A, Birchenough GMH, Schütte A, et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews. 2014;260(1):8–20.

Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Vol. 159, Clinical Immunology. Academic Press Inc.; 2015. p. 122–7.

Li D, Wang P, Wang P, Hu X, Chen F. Targeting the gut microbiota by dietary nutrients: A new avenue for human health. Critical Reviews in Food Science and Nutrition. 2019 Jan 19;59(2):181–95.

Spencer SP, Fragiadakis GK, Sonnenburg JL. Pursuing Human-Relevant Gut Microbiota-Immune Interactions [Internet]. Vol. 51, Immunity. Cell Press; 2019 [cited 2020 Nov 30]. p. 225–39. Available from: https://pubmed.ncbi.nlm.nih.gov/31433970/

Ahern PP, Maloy KJ. Understanding immune–microbiota interactions in the intestine. Vol. 159, Immunology. Blackwell Publishing Ltd; 2020. p. 4–14.

Wells JM, Spence JR. How to make an intestine. Development (Cambridge). 2014 Feb 15;141(4):752–60.

Yu Y, Yang W, Li Y, Cong Y. Enteroendocrine cells: sensing gut microbiota and regulating inflammatory bowel diseases. Inflammatory Bowel Diseases. 2020 Jan 1;26(1):11–20.

Bayer F, Dremova O, Khuu MP, Mammadova K, Pontarollo G, Kiouptsi K, et al. The interplay between nutrition, innate immunity, and the commensal microbiota in adaptive intestinal morphogenesis. Nutrients [Internet]. 2021 Jun 26 [cited 2021 Aug 2];13(7). Available from: http://www.ncbi.nlm.nih.gov/pubmed/34206809

Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis [Internet]. Vol. 74, Cellular and Molecular Life Sciences. Birkhauser Verlag AG; 2017 [cited 2020 Dec 3]. p. 2959–77. Available from: https://pubmed.ncbi.nlm.nih.gov/28352996/

Fallucca F, Fontana L, Fallucca S, Pianesi M, Francesco. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World Journal of Diabetes. 2015;6(3):403.

Lin L, Zhang J. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. Vol. 18, BMC Immunology. BioMed Central Ltd.; 2017.

Madore C, Leyrolle Q, Lacabanne C, Benmamar-Badel A, Joffre C, Nadjar A, et al. Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plasticity. 2016;2016:1–15.

Tmdm L, Cmgd S, Lhs M, Fld C, Mgd A. Efeitos do butirato nos níveis de peroxidação lipídica em células da mucosa cólica sem trânsito fecal: estudo experimental em ratos. Rev bras Coloproct. 2011;31(2).

Nava GM, Carbonero F, Croix JA, Greenberg E, Gaskins HR. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME Journal. 2012 Jan;6(1):57–70.

Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man. Vol. 45, Biochemical Society Transactions. Portland Press Ltd; 2017. p. 1105–15.

Calder PC, Willemsen LEM. Immunopharmacology of fatty acids [Internet]. Vol. 785, European Journal of Pharmacology. Elsevier B.V.; 2016 [cited 2020 Dec 1]. p. 1. Available from: https://pubmed.ncbi.nlm.nih.gov/27492754/

Calder PC. Omega-3 fatty acids and inflammatory processes: From molecules to man [Internet]. Vol. 45, Biochemical Society Transactions. Portland Press Ltd; 2017 [cited 2020 Dec 4]. p. 1105–15. Available from: https://pubmed.ncbi.nlm.nih.gov/28900017/

Calder PC. Omega-3 fatty acids and inflammatory processes. Vol. 2, Nutrients. MDPI AG; 2010. p. 355–74.

Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Scientific Reports. 2015 Jun 11;5.

Xiao G, Tang L, Yuan F, Zhu W, Zhang S, Liu Z, et al. Eicosapentaenoic acid enhances heat stress-impaired intestinal epithelial barrier function in caco-2 cells. PLoS ONE. 2013 Sep 16;8(9).

Calder PC. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Vol. 1851, Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. Elsevier; 2015. p. 469–84.

Costanza M, Cesi V, Prete E, Negroni A, Palone F, Cuchiarc S, et al. Óleo de krill reduz a inflamação intestinal, melhorando a integridade do epitélio e reduzindo a patogenicidade da escherichia coli aderente-invasiva. 2016;48:34–42.

Innes JK, Calder PC. Omega-6 fatty acids and inflammation [Internet]. Vol. 132, Prostaglandins Leukotrienes and Essential Fatty Acids. Churchill Livingstone; 2018 [cited 2020 Dec 4]. p. 41–8. Available from: https://pubmed.ncbi.nlm.nih.gov/29610056/

Guarner F. Microbiota intestinal y enfermedades inflamatorias del intestino. Gastroenterología y Hepatología [Internet]. 2011 Mar 1 [cited 2022 Jan 23];34(3):147–54. Available from: https://www.elsevier.es/es-revista-gastroenterologia-hepatologia-14-articulo-microbiota-intestinal-enfermedades-inflamatorias-del-S0210570511000379

Onali S, Favale A, Fantini MC. The resolution of intestinal inflammation: the peace-keeper’s perspective. Cells [Internet]. 2019 Apr 11 [cited 2022 Jan 23];8(4):344. Available from: /pmc/articles/PMC6523641/

Schirmer M, Smeekens SP, Vlamakis H, Jaeger M, Oosting M, Franzosa EA, et al. Linking the human gut microbiome to inflammatory cytokine production capacity. Cell [Internet]. 2016 Nov 3 [cited 2021 Aug 2];167(4):1125. Available from: /pmc/articles/PMC5131922/

Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity 2013, Vol 5, Pages 627-640 [Internet]. 2013 Aug 9 [cited 2022 Jan 23];5(3):627–40. Available from: https://www.mdpi.com/1424-2818/5/3/627/htm

Rivollier A, He J, Kole A, Valatas V, Kelsall BL. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. The Journal of experimental medicine [Internet]. 2012 Jan [cited 2022 Jan 23];209(1):139–55. Available from: https://pubmed.ncbi.nlm.nih.gov/22231304/

Downloads

Publicado

2023-08-04

Edição

Seção

Artigos de Revisão