ENHANCING PHYSICS EDUCATION
THE IMPACT OF COMPUTER SIMULATORS ON STUDENT PERFORMANCE AND CONCEPTUAL UNDERSTANDING
DOI:
https://doi.org/10.18316/rcd.v17i45.12486Keywords:
Computer simulation, Newtonian mechanics, Newton's laws, conceptual understanding, PhET simulatorAbstract
This study delves into the advantages of incorporating computer simulations, mainly the PhET simulator, in instructing Newton's laws in contrast to conventional teaching approaches. The research revealed that students who engaged with the simulator exhibited enhanced comprehension of the Newtonian concepts. Additionally, educators noted the simulator's ease of use and efficacy in conveying Newtonian mechanics. The investigation involved examining 120 students from two schools in Morocco, with one group utilizing computer simulations and the other adhering to traditional teaching methods. The normalized learning gain was computed for each group to gauge the learning impact, demonstrating a statistically significant variance favoring the simulation group. These findings underscore the effectiveness of computer simulations in bolstering students' conceptual grasp of Newton's laws. Teachers expressed contentment with the PhET simulator, highlighting its user-friendly interface and pedagogical effectiveness. By engaging with the simulation, students could visualize and experiment with the abstract principles of Newton's laws tangibly, thereby fostering improved knowledge retention. In conclusion, this study underscores the merits of integrating computer simulations, mainly the PhET simulator, in Newton's laws instruction. These outcomes advocate for digital tools to enhance science education and fortify understanding of fundamental scientific concepts. Computer simulations can be an innovative and efficient pedagogical approach to teaching Newton's laws and other scientific principles. By leveraging simulation technology, educators can create engaging and interactive learning experiences that facilitate deeper comprehension and retention of the scientific tenets among students.
References
Alabidi, S., Alarabi, K., Tairab, H., Alamassi, S., & Alsalhi, N. R. (2023). The effect of computer simulations on students’ conceptual and procedural understanding of Newton’s second law of motion. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2259. https://doi.org/10.29333/ejmste/13140
Atasoy, Ş., & Akdeniz, A. R. (2007). Newton’un Hareket Kanunları konusunda kavram yanılgılarını belirlemeye yönelik bir testin geliştirilmesi ve uygulanması. Journal of Turkish Science Education, 4(1), 45–59. http://www.tused.org/index.php/tused/article/download/658/564
Bayrak, B. (2007). TO COMPARE THE EFFECTS OF COMPUTER BASED LEARNING AND THE LABORATORY BASED LEARNING ON STUDENTS’ ACHIEVEMENT REGARDING ELECTRIC CIRCUITS. Turkish Online Journal of Educational Technology, 6(1), 15–24. http://files.eric.ed.gov/fulltext/ED500072.pdf
Bertacchini, F., Bilotta, E., Caldarola, F., & Pantano, P. (2018). The role of computer simulations in learning analytic mechanics towards chaos theory: a course experimentation. International Journal of Mathematical Education in Science and Technology, 50(1), 100–120. https://doi.org/10.1080/0020739x.2018.1478134
Bouffy, H. D. E. (2022). L’intégration des TIC dans la formation des enseignants au Maroc: analyse documentaire des réformes éducatives The use of TIC in teachers training in Morocco: documentary analysis of educational reforms. HAL (Le Centre Pour La Communication Scientifique Directe). https://doi.org/10.5281/zenodo.7158416
Boumediane, M. B., Benabdelouahab, F., & Idrissi, R. J. (2022). TEACHING OF PHYSICAL SCIENCES IN MOROCCAN COLLEGES: THE OBSTACLES AND DIFFICULTIES ENCOUNTERED. 14(1).
Boumediane, M. B., Janati-Idrissi, R., & Benabdelouhab, F. (2023). PROFILING OF MOROCCAN HIGH SCHOOL PHYSICAL SCIENCE TEACHERS FOR IN-SERVICE TRAINING IN ICT: A CROSS-SECTIONAL EXPLORATORY STUDY. International Journal of Education, Technology and Science, 3(4), Article 4.
Cabedo, L., Royo, M., Miravet, L. M., & Guraya, T. (2018). University Social Responsibility towards Engineering Undergraduates: The Effect of Methodology on a Service-Learning Experience. Sustainability, 10(6), 1823. https://doi.org/10.3390/su10061823
Chekour, M. (2015). Les facteurs influençant l’acquisition des concepts en électricité. Cas des lycéens marocains. Adjectif.net. https://adjectif.net/spip.php?article354
D’Angelo, C., Rutstein, D. W., Harris, C., Bernard, R., Borokhovski, E., & Haertel, G. D. (2014). Simulations for STEM learning: Systematic review and meta-analysis. SRI Education. https://experts.illinois.edu/en/publications/simulations-for-stem-learning-systematic-review-and-meta-analysis
De Freitas, S. I. (2006). Using games and simulations for supporting learning. Learning, Media and Technology, 31(4), 343–358. https://doi.org/10.1080/17439880601021967
De Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. https://doi.org/10.1126/science.1230579
Deliktaş, B. (2011). Computer technology for enhancing teaching and learning modules of engineering mechanics. Computer Applications in Engineering Education, 19(3), 421–432. https://doi.org/10.1002/cae.20321
Droui, M., & El Hajjami, A. (2015). Simulation et apprentissage par investigation [Article]. In www.est-usmba.ac.ma (Vol. 1). http://www.est-usmba.ac.ma/conferences/apel2015/proceeding/docs/E15C08.pdf
Droui, M., El Hajjami, A., Bouklah, M., & Zouirech, S. (2013). Impact de l’apprentissage par problème sur la compréhension conceptuelle de la mécanique newtonienne. EpiNet, 157. https://edutice.hal.science/edutice-00940669/file/a1309d.htm
El HASSOUNY, E. H., KADDARI, F., Abdelrhani, E., & Habibi, I. (2015). LOGICIEL DE SIMULATION “DYNAMIC” ET APPRENTISSAGE DE LA MECANIQUE NEWTONIENNE EN DEUXIEME ANNEE BACCALAUREAT. American Journal of Innovative Research and Applied Sciences, 2(5), 210–220. https://www.american-jiras.com/El%20Hassan%20%20ManuscriptRef.2-ajiras050616.pdf
Gokhale, A. A. (1996). Effectiveness of computer simulation for enhancing higher order thinking. Journal of Industrial Teacher Education, 33(4), 36–46. https://eric.ed.gov/?id=EJ527047
Grimes, D., & Warschauer, M. (2008). Learning with Laptops: A Multi-Method Case Study. Journal of Educational Computing Research, 38(3), 305–332. https://doi.org/10.2190/ec.38.3.d
Hake, R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. American Journal of Physics, 66(1), 64–74. https://doi.org/10.1119/1.18809
Jacobs, G. M., Renandya, W. A., & Power, M. (2016). Simple, powerful strategies for student centered learning. In Springer briefs in education. https://doi.org/10.1007/978-3-319-25712-9
Jimoyiannis, A., & Komis, V. (2001). Computer simulations in physics teaching and learning: a case study on students’ understanding of trajectory motion. Computers & Education, 36(2), 183–204. https://doi.org/10.1016/s0360-1315(00)00059-2
Kane, P. S. (2011). Les pratiques expérimentales au lycée- Regards croisés des enseignants et de leurs élèves. Radisma, 7. http://www.fastef.ucad.sn/articles/saliou/article2_pratiques.pdf
Karsenti, T., & Gauthier, C. (2006). Les TIC bouleversent-elles réellement le travail des enseignants? Formation Et Profession, Le Bulletin Du CRIFPE, 12(3). http://www.thierrykarsenti.org/pdf/scholar/ARP-karsenti-32-2006.pdf
e gouvernement du Manitoba. (2013). Physique 12e année Programme d’études: document de mise en œuvre. In www.mtbb.mb.ca (No. 98284). Centre des manuels scolaires du Manitoba. https://www.edu.gov.mb.ca/m12/frpub/ped/sn/phys/dmo_12/pdf/doc_complet.pdf
Liao, Y., & Liu, S. (2020). MechGames: Teaching and Learning Dynamics through Computer Simulations and Games. American Society for Engineering Education. https://cms.jee.org/mechgames-teaching-and-learning-dynamics-through-computer-simulations-and-games
Lin, X. Y., Yang, W., Wu, L., Li-Fen, Z., Wu, D., & Hui, L. (2020). Using an Inquiry-Based Science and Engineering program to promote science knowledge, Problem-Solving skills and Approaches to learning in preschool children. Early Education and Development, 32(5), 695–713. https://doi.org/10.1080/10409289.2020.1795333
Macabebe, E. Q. B., Culaba, I. B., Maquiling, J. T., Paosawatyanyong, B., & Wattanakasiwich, P. (2010). Pre-conceptions of Newton’s laws of motion of students in Introductory Physics. AIP Conference Proceedings. https://doi.org/10.1063/1.3479843
Mahdi, K., Laafou, M., & Janati-Idrissi, R. (2018). L’impact de la formation continue à distance des professeurs de physique aux logiciels de simulation informatique. JOURNAL FOR EDUCATORS, TEACHERS AND TRAINERS, 9(1), 27–41. https://jett.labosfor.com/index.php/jett/article/view/179/92
Mico, S., Mandili, J., Tahiri, V., & Muco, R. (Eds.). (2010). Computer simulations enhance qualitative meaning of the Newton’s second law. GIREP-ICPE-MPTL Conference 2010. https://www.univ-reims.fr/site/evenement/girep-icpe-mptl-2010-reims-international-conference/gallery_files/site/1/90/4401/22908/29678/29698.pdf
Mirana, V. P. (2016). Effects of Computer Simulations and Constructivist Approach on Students’ Epistemological Beliefs, Motivation and Conceptual Understanding in Physics. Social Sciences, Humanities and Education, 89–93. https://doi.org/10.17758/uruae.uh0516087
Obaidat, I. M., & Malkawi, E. (2009). The grasp of Physics Concepts of motion: identifying particular patterns in students’ thinking. International Journal for the Scholarship of Teaching and Learning, 3(1). https://doi.org/10.20429/ijsotl.2009.030119
Perkins, K. K., Adams, W. K., Dubson, M., Finkelstein, N. D., Reid, S., Wieman, C., & LeMaster, R. (2005). PHET: Interactive Simulations for Teaching and Learning Physics. The Physics Teacher, 44(1), 18–23. https://doi.org/10.1119/1.2150754
Quels apports du codage des données qualitatives? (2006). In C. Saubesty – Vallier (Ed.), Conférence Internationale de Management Stratégique, Annecy / Genève 13-16 Juin (15th ed., Vol. 2016). https://apprendre.auf.org/wp-content/opera/13-BF-References-et-biblio-RPT-2014/Quels%20apports%20du%20codage%20des%20donn%C3%A9es%20qualitatives%20.pdf
Sağlam-Arslan, A., & Devecioğlu, Y. (2010a). Student teachers’ levels of understanding and model of understanding about Newton’s laws of motion. Asia-Pacific Forum on Science Learning and Teaching, 11(1). https://www.ied.edu.hk/apfslt/download/v11_issue1_files/arslan.pdf
Sağlam-Arslan, A., & Devecioğlu, Y. (2010b). Student teachers’ levels of understanding and model of understanding about Newton’s laws of motion. Asia-Pacific Forum on Science Learning and Teaching, 11(1). https://www.ied.edu.hk/apfslt/download/v11_issue1_files/arslan.pdf
Sari, D. P., Widodo, W., & Madlazim. (2021). Computer simulation feasibility for Newton’s law learning. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(14), 4282–4291. https://www.turcomat.org/index.php/turkbilmat/article/view/11270
Şengüleç, Ö. A., & Azar, A. (2010). Computer-Assisted and Laboratory-Assisted Teaching Methods in Physics Teaching: the Effect on Student Physics Achievement and Attitude towards Physics. Eurasian Journal of Physics and Chemistry Education, 1(1), 43–50. http://www.eurasianjournals.com/index.php/ejpce/article/viewFile/613/pdf_104
Smetana, L. K., & Bell, R. L. (2012). Computer Simulations to Support Science Instruction and Learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. https://doi.org/10.1080/09500693.2011.605182
Sornkhatha, P., & Srisawasdi, N. (2013). Supporting conceptual development in Newton’s laws of motion using an interactive computer-simulated laboratory environment. Procedia - Social and Behavioral Sciences, 93, 2010–2014. https://doi.org/10.1016/j.sbspro.2013.10.157
Srisawasdi, N. (2012). Student Teachers’ perceptions of Computerized Laboratory Practice for science Teaching: A Comparative analysis. Procedia - Social and Behavioral Sciences, 46, 4031–4038. https://doi.org/10.1016/j.sbspro.2012.06.192
White, H., & Sabarwal, S. (2014). Méthodes et modèles quasi expérimentaux. In www.unicef-irc.org/ (No. 8). Centre de recherche Innocenti de l’UNICEF. Retrieved November 20, 2023, from https://www.unicef-irc.org/publications/pdf/MB8FR.pdf
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Manar Ben Boumediane, Oumaima Azzi, Rachid Janati-Idrissi

This work is licensed under a Creative Commons Attribution 4.0 International License.
As recommended by the Public Knowledge Project, RCD adopts for its articles a CREATIVE COMMONS Attribution CC BY 4.0 license.
This license allows others to distribute, remix, adapt and build upon your work, even commercially, as long as they credit you for the original creation.
This is the most appropriate license offered.
Recommended for maximum dissemination and use of licensed materials.